24 research outputs found

    Green care in agriculture:a visual ethnographic study exploring the therapeutic landscape experiences of people with intellectual disabilities engaged in care farming activities

    Get PDF
    The use of agricultural landscapes to create interventions to improve health and wellbeing (care farming) is increasingly being advocated as a viable alternative to more traditional forms of health and social care. Yet the views and experiences of people with intellectual disabilities (the UK care farm industry’s main service user) have rarely been sought. Given the current lack of evidence, this study aims to fill this gap through an in-depth exploration of the wellbeing effects of care farming for people with intellectual disabilities. Theoretically, this thesis is situated within the field(s) of social and health geography. Specifically, it draws together recent work on therapeutic landscapes, non-representational theory and disability geographies to build a conceptual framework, through which to explore the material, embodied, relational and inter-subjective elements that foreground people’s therapeutic landscape encounters. Using a range of qualitative methods of data collection (including photography and film) this research draws on empirical findings from seven ethnographic case studies. Three substantive chapters examine the experiences of people with intellectual disabilities engaged in care farming activities for health and wellbeing. The first describes participants’ embodied engagements with various features of the care farm environment and ways in which these served to facilitate or hinder the formation of a therapeutic landscape experience. The second explores the wider impact that these kinds of encounters had on the everyday lives of participants. The third chapter examines in more detail the place experiences described in the previous two chapters, and the extent to which these experiences may facilitate feelings of belonging (both at the care farm and within the wider community). This, I argue, is an important wellbeing outcome of care farming for people with intellectual disabilities. In drawing together the arguments presented throughout, I argue that this thesis contributes to the field of therapeutic landscapes by drawing attention to the transformative power of the therapeutic encounter, as well as the broader socio-spatial environments in which people live and ways in which these can limit that power. This thesis also contributes to disability scholarship by moving beyond purely discursive accounts of disability centred on meaning and identity, to consider actual visceral experience, as this relates to health and impairment

    More Than Words:The Use of Video in Ethnographic Research With People With Intellectual Disabilities

    Get PDF
    There is a tendency to exclude people with intellectual disabilities from participating in research about their own lives. While the use of participatory research approaches is increasing, the methods used for engaging people with intellectual disabilities in research are generally limited to interviews and focus groups. Yet a focus on the spoken or written word can present a challenge for those who may prefer to use alternative forms of communication. The purpose of this article is to share the methodological insights gained from a visual ethnographic study that sought to explore the experiences of people with intellectual disabilities engaged in nature based (or "green care") therapeutic interventions for health and well-being. If used within carefully negotiated relationships, we suggest that video can be an empowering visual medium for doing research that can help to elicit the experiences of people with intellectual disabilities firsthand, without having to rely on the views and perspectives of other people

    Therapeutic spaces of care farming:Transformative or ameliorating?

    Get PDF
    Since Wil Gesler's earliest articulation (Gesler, 1992; Gesler, 1996) key thinkers in the field of therapeutic landscapes have sought to emphasise the embodied, contextual and wholly relational nature of the relationship that exists between people and place. However, the extant research has tended to focus on the relational healing experience as this occurs ‘in the moment’ and with reference to a specific location or site of healing, with less attention being paid to what happens to people when they return to their ordinary or everyday places. In this paper, we reflect on findings from visual ethnographic work (including photography and film) that explored the therapeutic landscape experiences of people with intellectual disabilities engaged in care farming interventions for health and wellbeing. The study also recruited farm staff and family members or carers to take part, and comprised 20 participants in total. Having identified a gap in our understanding, consideration is given to wider impact that engaging in these sorts of activities had on the everyday lives of the participants in this study. We argue that this study has identified two types of therapeutic journey that broadly fit the experiences of study participants. The first type of journey denotes landscape experiences that are transformative. Here the therapeutic power of the care farm landscape resides in the ability of activities conducted on care farms to influence other aspects of participants' lives in ways that promote wellbeing. By contrast, there is another type of journey where the therapeutic power of the care farm resides in its ability to ameliorate challenging or harmful life situations, thus offering people a temporary site of respite or refuge. We conclude that these findings denote an important development for this sub-field of health geography, not only because they draw attention to the transformative power of the therapeutic encounter, but also the broader socio-spatial environments in which people live and ways in which these can limit that power

    Researching belonging with people with learning disabilities:Self-building active community lives in the context of personalisation

    Get PDF
    We wanted to understand more about how people with learning disabilities are building active community lives to help belonging. We spoke to 39 people from 29 different support organisations, 7 local authority representatives and 43 people with learning disabilities. They said belonging was about having the time to connect with other people in “everyday” places, being part of a supportive network and having the right choice and information. Belonging is like a cake. It needs the right ingredients. These ingredients include the right combination of people, places and times. Because of cuts to funding, many people with learning disabilities lack the right support, choice and information to access their communities. This is not belonging. ​. Abstract: Background This journal article draws on findings from a research project that examined how people with learning disabilities and their allies were seeking to build a sense of belonging. We wanted to focus on the concept of “belonging” in the context of personalisation and reduced government social care funding. Specifically, we sought to understand how people with learning disabilities and their supporters were coming together to “self-build” networks of support including friendship clubs and self-advocacy groups to enable a greater sense of belonging in their local communities. Methods Qualitative interviews were conducted with seven local authority representatives across four case study areas in the UK, as well as 39 staff across 29 organisations providing a range of day and evening support and activities. We also talked to 43 people with learning disabilities across the four areas about their experiences. Findings Our findings demonstrate how belonging involves a complex configuration of actors, places, times, relationships and institutional roles (much like the ingredients in a cake). The ways in which belonging intersects with agency and choice was also identified as an important and novel finding of our study. Conclusion While belonging is often presented to people as a desirable and realisable outcome of social inclusion policies, cuts in funding and a lack of appropriate support frustrate people's desires to meaningfully belong with other people in their local community. This demonstrates the importance of supporting social environments that meet people's needs for social connectedness and belonging

    MIPAS observations of ozone in the middle atmosphere

    Get PDF
    This work is distributed under the Creative Commons Attribution 4.0 License.In this paper we describe the stratospheric and mesospheric ozone (version V5r-O3-m22) distributions retrieved from MIPAS observations in the three middle atmosphere modes (MA, NLC, and UA) taken with an unapodized spectral resolution of 0.0625 cm from 2005 until April 2012. O is retrieved from microwindows in the 14.8 and 10 μm spectral regions and requires non-local thermodynamic equilibrium (non-LTE) modelling of the O and vibrational levels. Ozone is reliably retrieved from 20 km in the MA mode (40 km for UA and NLC) up to ∼105 km during dark conditions and up to ∼95 km during illuminated conditions. Daytime MIPAS O has an average vertical resolution of 3-4 km below 70 km, 6-8 km at 70-80 km, 8-10 km at 80-90, and 5-7 km at the secondary maximum (90-100 km). For nighttime conditions, the vertical resolution is similar below 70 km and better in the upper mesosphere and lower thermosphere: 4-6 km at 70-100 km, 4-5 km at the secondary maximum, and 6-8 km at 100-105 km. The noise error for daytime conditions is typically smaller than 2% below 50 km, 2-10% between 50 and 70 km, 10-20% at 70-90 km, and ∼30% above 95 km. For nighttime, the noise errors are very similar below around 70 km but significantly smaller above, being 10-20% at 75-95 km, 20-30% at 95-100 km, and larger than 30% above 100 km. The additional major O errors are the spectroscopic data uncertainties below 50 km (10-12 %) and the non-LTE and temperature errors above 70 km. The validation performed suggests that the spectroscopic errors below 50 km, mainly caused by the O air-broadened half-widths of the band, are overestimated. The non-LTE error (including the uncertainty of atomic oxygen in nighttime) is relevant only above ∼85 km with values of 15-20 %. The temperature error varies from ∼3% up to 80 km to 15-20% near 100 km. Between 50 and 70 km, the pointing and spectroscopic errors are the dominant uncertainties. The validation performed in comparisons with SABER, GOMOS, MLS, SMILES, and ACE-FTS shows that MIPAS O has an accuracy better than 5% at and below 50 km, with a positive bias of a few percent. In the 50-75 km region, MIPAS O has a positive bias of ∼10 %, which is possibly caused in part by O spectroscopic errors in the 10 μm region. Between 75 and 90 km, MIPAS nighttime O is in agreement with other instruments by 10 %, but for daytime the agreement is slightly larger, ∼10-20 %. Above 90 km, MIPAS daytime O is in agreement with other instruments by 10 %. At night, however, it shows a positive bias increasing from 10% at 90 km to 20% at 95-100 km, the latter of which is attributed to the large atomic oxygen abundance used. We also present MIPAS O distributions as function of altitude, latitude, and time, showing the major O features in the middle and upper mesosphere. In addition to the rapid diurnal variation due to photochemistry, the data also show apparent signatures of the diurnal migrating tide during both day-and nighttime, as well as the effects of the semi-Annual oscillation above ∼70 km in the tropics and mid-latitudes. The tropical. daytime O at 90 km shows a solar signature in phase with the solar cycle. © Author(s) 2018.The IAA team was supported by the Spanish MICINN under the project ESP2014-54362-P and EC FEDER funds. The IAA and IMK teams were partially supported by ESA O3-CCI and MesosphEO projects. Maya Garcia-Comas was financially supported by MINECO through its >Ramon y Cajal> subprogram. Funding for the Atmospheric Chemistry Experiment comes primarily from the Canadian Space Agency. Work at the Jet Propulsion Laboratory was performed under contract with the National Aeronautics and Space Administration

    On the improved stability of the version 7 MIPAS ozone record

    Get PDF
    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was an infrared limb emission spectrometer on the Envisat platform. From 2002 to 2012, it performed pole-to-pole measurements during day and night, producing more than 1000 profiles per day. The European Space Agency (ESA) recently released the new version 7 of Level 1B MIPAS spectra, in which a new set of time-dependent correction coefficients for the nonlinearity in the detector response functions was implemented. This change is expected to reduce the long-term drift of the MIPAS Level 2 data. We evaluate the long-term stability of ozone Level 2 data retrieved from MIPAS v7 Level 1B spectra with the IMK/IAA scientific level 2 processor. For this, we compare MIPAS data with ozone measurements from the Microwave Limb Sounder (MLS) instrument on NASA\u27s Aura satellite, ozonesondes and ground-based lidar instruments. The ozonesondes and lidars alone do not allow us to conclude with enough significance that the new version is more stable than the previous one, but a clear improvement in long-term stability is observed in the satellite-data-based drift analysis. The results of ozonesondes, lidars and satellite drift analysis are consistent: all indicate that the drifts of the new version are less negative/more positive nearly everywhere above 15km. The 10-year MIPAS ozone trends calculated from the old and the new data versions are compared. The new trends are closer to old drift-corrected trends than the old uncorrected trends were. From this, we conclude that the nonlinearity correction performed on Level 1B data is an improvement. These results indicate that MIPAS data are now even more suited for trend studies, alone or as part of a merged data record

    Updated merged SAGE-CCI-OMPS+ dataset for the evaluation of ozone trends in the stratosphere

    Get PDF
    In this paper, we present the updated SAGE-CCI-OMPS+ climate data record of monthly zonal mean ozone profiles. This dataset covers the stratosphere and combines measurements by nine limb and occultation satellite instruments – SAGE II (Stratospheric Aerosol and Gases Experiment II), OSIRIS (Optical Spectrograph and InfraRed Imaging System), MIPAS (Michelson Interferometer for Passive Atmospheric Sounding), SCIAMACHY (SCanning Imaging Spectrometer for Atmospheric CHartographY), GOMOS (Global Ozone Monitoring by Occultation of Stars), ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), OMPS-LP (Ozone Monitor Profiling Suite Limb Profiler), POAM (Polar Ozone and Aerosol Measurement) III, and SAGE III/ISS (Stratospheric Aerosol and Gases Experiment III on the International Space Station). Compared to the original version of the SAGE-CCI-OMPS dataset (Sofieva et al., 2017b), the update includes new versions of MIPAS, ACE-FTS, and OSIRIS datasets and introduces data from additional sensors (POAM III and SAGE III/ISS) and retrieval processors (OMPS-LP). In this paper, we show detailed intercomparisons of ozone profiles from different instruments and data versions, with a focus on the detection of possible drifts in the datasets. The SAGE-CCI-OMPS+ dataset has a better coverage of polar regions and of the upper troposphere and the lower stratosphere (UTLS) than the previous dataset. We also studied the influence of including new datasets on ozone trends, which are estimated using multiple linear regression. The changes in the merged dataset do not change the overall morphology of post-1997 ozone trends; statistically significant trends are observed in the upper stratosphere. The largest changes in ozone trends are observed in polar regions, especially in the Southern Hemisphere

    An update on ozone profile trends for the period 2000 to 2016

    Get PDF
    Ozone profile trends over the period 2000 to 2016 from several merged satellite ozone data sets and from ground-based data measured by four techniques at stations of the Network for the Detection of Atmospheric Composition Change indicate significant ozone increases in the upper stratosphere, between 35 and 48 km altitude (5 and 1 hPa). Near 2 hPa (42 km), ozone has been increasing by about 1.5 % per decade in the tropics (20° S to 20° N), and by 2 to 2.5 % per decade in the 35 to 60° latitude bands of both hemispheres. At levels below 35 km (5 hPa), 2000 to 2016 ozone trends are smaller and not statistically significant. The observed trend profiles are consistent with expectations from chemistry climate model simulations. This study confirms positive trends of upper stratospheric ozone already reported, e.g., in the WMO/UNEP Ozone Assessment 2014 or by Harris et al. (2015). Compared to those studies, three to four additional years of observations, updated and improved data sets with reduced drift, and the fact that nearly all individual data sets indicate ozone increase in the upper stratosphere, all give enhanced confidence. Uncertainties have been reduced, for example for the trend near 2 hPa in the 35 to 60° latitude bands from about ±5 % (2σ) in Harris et al. (2015) to less than ±2 % (2σ). Nevertheless, a thorough analysis of possible drifts and differences between various data sources is still required, as is a detailed attribution of the observed increases to declining ozone-depleting substances and to stratospheric cooling. Ongoing quality observations from multiple independent platforms are key for verifying that recovery of the ozone layer continues as expected
    corecore